

Problem

- Social media debates are long term and dynamic
- Data collection methods relying on static keyword sets to pull data are quickly outpaced by conversation
- We propose an algorithm to track fast-changing social media discussions and **demonstrate** performance and results on #MeToo & Election Fraud data

Data and Method

- historical data curated 2017 #MeTc by Twitter using Boolean filtering
- **Goal:** discover trending hashtags in monthly dynamic analysis and evaluate performance

• **2020 Election Fraud:** streaming API

• **Goal:** discover relevant keywords in real time to include in streaming monitor

Dynamic Algorithm

- Begin with initial keyword set s_0 at t = 0.
- Repeat until t = T:
 - Use keyword set s_t to stream dataset K_t.
 - Train GloVe on K_t to produce G_t , the embedding space of all dialogue.
- For each word $s \in s_t$, find n closest neighbors via cosine distance.
- Extract relevant terms from neighbors and filter outdated terms to produce S_{t+1} .
- Set $s \leftarrow s_{t+1}$ and $t \leftarrow t+1$.

Tracking Social Media Movements with Dynamic Keyword Algorithm

Maya Srikanth^{1,4}, Nicholas Adams-Cohen^{3,5}, Anqi Liu^{1,4}, Jian Cao^{2,4}, Anima Anandkumar^{1,4}, R. Michael Alvarez^{2,4} Computing and Mathematical Sciences¹, Social Sciences², Immigration Policy Lab³ California Institute of Technology⁴, Stanford⁵

Figure 1. #MeToo Keyword Evolution. Evolution of keyword set (restricted to 15 keywords) in a simulation of the algorithm on historical 2017 #MeToo data. Choice of which terms to add or remove each month is based on an analysis of corpus frequency and cosine similarity as presented in Figure 2 below.

#MeToo Interface

Corpus	Frequency	Cosine	Distance	Neighbors
	0.000040		0.259658	#theresistance
	0.000391		0.259966	@potus
	0.000013		0.282956	#potus
	0.000137		0.296841	#maga
	0.001361		0.305750	@realdonaldtrump
	0.000063		0.309266	#resist
	0.000000		0.324266	ityi
	0.000010		0.328069	#alternativefacts
	0.000021		0.334142	#resistance
	0.000014		0.338640	#notmypresident
	0.000002		0.340954	#trumpleaks
	0.000007		0.359081	#inauguration
	0.000015		0.373553	#womansmarch
	0.00003		0.379256	#nodapl
	0.000021		0.379575	#womensmarchonwashington
	0.000000		0.386028	gnrtc

Figure 2. Interface for choosing neighbors in Dynamic Algorithm. Shown are the 15 closest words to "#trump" in Jan 2017 #MeToo data. "Corpus Frequency" is the proportion of corpus that contains the keyword.

Election Fraud Monitor

- Noncitizen: (@gatewaypundit, #stopthesteal)
- Voting: (mail, pandemic)
- Rigged: (scandal)
- Voter: (suppression, gerrymandering)
- Voter intimidation: (lynching, segregation, #antifathugs)
- Voter Suppression: (gerrymandering, racist)
- Alien voting: (#trumpisa, illegal, #unsc)

Figure 3. Election Fraud Discovered Keywords. Bolded words are original keywords, and words in parentheses are close neighbors discovered by the dynamic algorithm over a week's worth of data.

Performance of Dynamic Algorithm on Historical #MeToo Data

Figure 4. Performance of various monitors (including dynamic algorithm) on historical #MeToo data show in terms of F1 score with respect to target set of top 20 hashtags per month.

Figure 4 Monitor Types:

- Dynamic (see Dynamic Algorithm)
- **Last-top**: uses top 15 most frequent hashtags in previous month to pull data
- **Static:** uses top 15 hashtags in January to pull data throughout all months

Conclusion & Discussion

- Algorithm offers **12.5%** improvement in F1 score over conventional static data collection methods.
- Algorithm in the wild has the potential to uncover **new &** meaningful terms
- Working on ML-driven forecasting of trending hashtags for keyword selection.

Acknowledgements

 Special thanks to Oracle Cloud!

